Income Statement Structure

Net sales

- Cost of goods sold

Gross profit

- Operating expenses

- Depreciation Expense

Operating profit

- Interest expense

Profit before taxes

- Taxes

Net income

Balance Sheet...

ASSETS	LIABILITIES
Cash	Notes Payable
Net Accounts Receivable	Accounts Payable
Inventories	Accrued Expenses
Total Current Assets	Current Portion of Long-Term Debt
	Total Current Liabilities
Gross Fixed Assets	
(less Accumulated Depreciation)	Long-Term Debt (excluding the current portion)
Net Fixed Assets	Total Liabilities
Total Assets	
	EQUITY
	Preferred Stock
	Common Stock
	Retained Earnings
	Total Liabilities and Equity

Chapter 2

Analysis of Financial Statements

ROA = Net profit margin × Total assets turnover

ROE = ROA × Equity multiplier
$$= \frac{\text{Net income}}{\text{Total assets}} \times \frac{\text{Total assets}}{\text{Common equity}}$$
2.3

$$\begin{split} \mathsf{ROE} \ = \ & \left[\begin{pmatrix} \mathsf{Profit} \\ \mathsf{margin} \end{pmatrix} \ \times \ \begin{pmatrix} \mathsf{Total} \ \mathsf{assets} \\ \mathsf{turnover} \end{pmatrix} \right] \times \begin{pmatrix} \mathsf{Equity} \\ \mathsf{multiplier} \end{pmatrix} \\ = & \left[\frac{\mathsf{Net} \ \mathsf{income}}{\mathsf{Sales}} \ \times \ \frac{\mathsf{Sales}}{\mathsf{Total} \ \mathsf{assets}} \right] \ \times \frac{\mathsf{Total} \ \mathsf{assets}}{\mathsf{Common} \ \mathsf{equity}} \end{split}$$

Chapter 3

The Financial Environment: Markets, Institutions, and Investment Banking

Amount of issue =
$$\frac{NP + OC}{(1 - F)}$$
 3.1

Chapter 4

Time Value of Money

$$FV_n = PV(1+r)^n 4.1$$

$$FVA_{n} = PMT[(1+r)^{n-1} + (1+r)^{n-2} + \dots + (1+r)^{0}]$$

$$= PMT \sum_{t=0}^{n-1} (1+r)^{t} = PMT \left\lceil \frac{(1+r)^{n} - 1}{r} \right\rceil \qquad 4.2$$

$$FVA(DUE)_{n} = PMT \sum_{t=0}^{n-1} (1 + r)^{t} (1 + r)$$

$$= PMT \left\{ \left[\frac{(1 + r)^{n} - 1}{r} \right] \times (1 + r) \right\}$$
4.3

$$FVCF_{n} = CF_{1}(1 + r)^{n-1} + \dots + CF_{n}(1 + r)^{0}$$

$$= \sum_{t=1}^{n} CF_{t}(1 + r)^{n-t}$$

$$PV = \frac{FV_n}{(1+r)_n} = FV_n \left[\frac{1}{(1+r)^n} \right]$$
 4.5

$$PVA_n = PMT \left[\sum_{t=1}^n \frac{1}{(1+r)^t} \right] = PMT \left[\frac{1 - \frac{1}{(1+r)^n}}{r} \right]$$
 4.6

$$PVA(DUE)_n = PMT\left\{\sum_{t=1}^{n} \left[\frac{1}{(1+r)^t}\right](1+r)\right\}$$

$$= PMT \left\{ \left[\frac{1 - \frac{1}{(1+r)^n}}{r} \right] \times (1+r) \right\}$$
 4.7

$$PVP = PMT \left[\frac{1}{r} \right] = \frac{PMT}{r}$$
 4.8

$$\begin{aligned} \text{PVCF}_n &= \text{CF}_1 \bigg[\frac{1}{(1+r)^1} \bigg] + \dots + \text{CF}_n \bigg[\frac{1}{(1+r)^n} \bigg] \\ &= \sum_{t=1}^n \text{CF}_t \bigg[\frac{1}{(1+r)^t} \bigg] \end{aligned} \tag{4.9}$$

Periodic rate =
$$r_{PER} = \frac{\left(\text{Stated annual interest rate}\right)}{\left(\text{Number of interest payments per year}\right)}$$

$$= \frac{r_{SIMPLE}}{m} \qquad 4.10$$

Number of interest periods =
$$n_{PER} = \binom{Number}{of \ years} \times \binom{Number \ of \ interest}{payments \ per \ year}$$
 = $n_{YRS} \times m$ 4.11

Effective annual rate (EAR)
$$= r_{EAR} = \left(1 + \frac{r_{SIMPLE}}{m}\right)^m - 1.0$$
$$= (1 + r_{PER})^m - 1.0$$

Chapter 5

The Cost of Money (Interest Rates)

$$\label{eq:Yield} \begin{aligned} \text{Yield} &= \frac{\text{Total dollar return}}{\text{Beginning value}} = \frac{\text{Dollar income} + \text{Capital gains}}{\text{Beginning value}} \\ &= \frac{\text{Dollar income} + (\text{Ending value} - \text{Beginning value})}{\text{Beginning value}} \\ \end{aligned}$$

Rate of return =
$$r = \begin{pmatrix} Risk-free \\ rate \end{pmatrix} + \begin{pmatrix} Risk \\ premium \end{pmatrix}$$
 5.2

$$r = r_{RF} + RP$$

$$= r_{RF} + [DRP + LP + MRP]$$
 5.3

$$r_{Treasury} = r_{RF} + MRP = (r^* + IP) + MRP$$
 5.4

Yield (%) on an n-year bond
$$= \frac{R_1 + R_2 + \dots + R_n}{n}$$
 5.5

Value of an asset
$$= \frac{\hat{CF}_1}{(1+r)^1} + \frac{\hat{CF}_2}{(1+r)^2} + \dots + \frac{\hat{CF}_n}{(1+r)^n}$$

$$= \sum_{t=1}^n \frac{\hat{CF}_t}{(1+r)^t}$$

Chapter 6

Bonds (Debt)-Characteristics and Valuation

Bond value =
$$V_d = INT \left[\frac{1 - \frac{1}{(1 + r_d)^N}}{r_d} \right] + M \left[\frac{1}{(1 + r_d)^N} \right]$$
 6.1

$$V_{d} = \left(\frac{INT}{2}\right) \left[\frac{1 - \frac{1}{(1 + r_{d/2})^{2 \times N}}}{(r_{d/2})}\right] + \frac{M}{(1 + r_{d/2})^{2 \times N}}$$
 6.2

Bond yield = Current yield + Capital gains yield

$$= \frac{INT}{V_{d,Begin}} + \frac{V_{d,End} - V_{d,Begin}}{V_{d,Begin}}$$
 6.3

Chapter 7

Stocks (Equity)—Characteristics and Valuation

Stock value =
$$V_s = \hat{P}_0 = \frac{\hat{D}_1}{(1 + r_s)^1} + \dots + \frac{\hat{D}_\infty}{(1 + r_s)^\infty}$$

= $\sum_{t=1}^{\infty} \frac{\hat{D}_t}{(1 + r_s)^t}$ 7.1

$$\hat{P}_0 = \frac{D_0 (1+g)^1}{(1+r_s)^1} + \frac{D_0 (1+g)^2}{(1+r_s)^2} + \dots + \frac{D_0 (1+g)^\infty}{(1+r_s)^\infty}$$

$$= \frac{D_0 (1+g)}{r_s - g} = \frac{\hat{D}_1}{r_s - g}$$
= value of a constant growth stock 7.2

$$\hat{r}_s = \frac{\hat{D}_1}{P_0} + g \qquad 7.3$$

$$\hat{P}_{t} = \frac{\left(\text{Final nonconstant} \right) + (1 + g_{\text{norm}})}{r_{\text{s}} - g_{\text{norm}}} = \frac{\left(\text{First constant} \right)}{r_{\text{s}} - g_{\text{norm}}}$$

$$= \frac{\hat{D}_{t}(1 + g_{norm})}{r_{s} - g_{norm}} = \frac{\hat{D}_{t+1}}{r_{s} - g_{norm}}$$
 7.4

$$= EBIT(1 - T) - \left[\begin{pmatrix} Average cost \\ of funds \end{pmatrix} \times \begin{pmatrix} Invested \\ capital \end{pmatrix} \right]$$
 7.5

Chapter 8 Risk and Rates of Return

Expected rate of return = $\hat{r} = Pr_1r_1 + \cdots + Pr_nr_n$

$$=\sum_{i=1}^{n}Pr_{i}r_{i}$$
 8.1

Standard deviation =
$$\sigma = \sqrt{(r_1 - \hat{r})^2 P r_1 + \dots + (r_n - \hat{r})^2 P r_n}$$

$$=\sqrt{\sum_{i=1}^{n}(r_{i}-\hat{r})^{2}Pr_{i}}$$
 8.2

Estimated
$$\sigma = s = \sqrt{\frac{\sum_{t=1}^{n} (\ddot{r}_t - \bar{r})^2}{n-1}}$$
 8.3

$$\bar{r} = \frac{\ddot{r}_1 + \ddot{r}_2 + \dots + \ddot{r}_n}{n} = \frac{\sum_{t=1}^n \ddot{r}_t}{n}$$
8.4

Coefficient of variation =
$$CV = \frac{Risk}{Return} = \frac{\sigma}{r}$$
 8.5

Expected portfolio return = $\hat{r}_p = w_1 \hat{r}_1 + w_2 \hat{r}_2 + \cdots + w_N \hat{r}_N$

$$=\sum_{j=1}^{N}w_{j}\hat{r}_{j}$$
 8.6

Portfolio beta
$$= \beta_p = w_1 \beta_1 + \cdots + w_N \beta_N$$

$$= \sum_{i=1}^N w_i \beta_i$$
 8.7

Risk premium for Stock j = RP_j = RP_M ×
$$\beta_j$$

= $(r_M - r_{RF})\beta_i$ 8.8

$$\begin{array}{lll} \mbox{Required} & = \mbox{Risk-free} & + \mbox{Premium} \\ \mbox{return} & + \mbox{ for risk} \\ \\ \mbox{r}_{j} & = \mbox{r}_{RF} & + \mbox{ RP}_{j} \\ \\ \mbox{r}_{j} & = \mbox{r}_{RF} & + \mbox{ (RP}_{M})\beta_{j} \\ \\ \mbox{e} & = \mbox{r}_{RF} & + \mbox{ (r}_{M} - \mbox{r}_{RF})\beta_{j} \end{array}$$
 8.10

Chapter 9

Capital Budgeting Techniques

$$NPV = \hat{CF}_0 + \frac{\hat{CF}_1}{(1+r)^1} + \frac{\hat{CF}_2}{(1+r)^2} + \dots + \frac{\hat{CF}_n}{(1+r)^n}$$

$$= \sum_{t=0}^n \frac{\hat{CF}_t}{(1+r)^t}$$
9.1

NPV =
$$\hat{CF}_0 + \frac{\hat{CF}_1}{(1 + IRR)^1} + \dots + \frac{\hat{CF}_n}{(1 + IRR)^n} = 0$$

or

$$\hat{CF}_0 = \frac{\hat{CF}_1}{(1 + IRR)^1} + \dots + \frac{\hat{CF}_n}{(1 + IRR)^n}$$
 9.2

PV of cash outflows =
$$\frac{TV}{(1 + MIRR)^n}$$

$$\sum_{t=0}^{n} \frac{\text{COF}_{t}}{(1+r)^{t}} = \frac{\sum_{t=0}^{n} \text{CIF}_{t} (1+r)^{n-t}}{(1+\text{MIRR})^{n}}$$
 9.3

Chapter 10

Project Cash Flows and Risk

Supplemental operating, $\widehat{CF}_t = \Delta Cash revenues_t - \Delta Cash expenses_t - \Delta Taxes_t$ $= \Delta NOI_t \times (1 - T) + \Delta Depr_t$ $= (\Delta NOI_t + \Delta Depr_t) \times (1 - T) + T\Delta Depr_t$ 10.1

Chapter 11

The Cost of Capital

$$\begin{pmatrix} \text{After-tax} \\ \text{component} \\ \text{cost of debt} \end{pmatrix} = r_{dT} = \begin{pmatrix} \text{Bondholders'} \\ \text{required} \\ \text{rate of return} \end{pmatrix} - \begin{pmatrix} \text{Tax} \\ \text{savings} \end{pmatrix}$$

$$= r_{d} - r_{d} \times T$$

$$= r_{d}(1 - T) \qquad 11.$$

$$V_{d} = \frac{INT}{(1 + YTM)^{1}} + \dots + \frac{INT + M}{(1 + YTM)^{N}}$$

$$= \frac{INT}{(1 + r_{d})^{1}} + \dots + \frac{INT + M}{(1 + r_{d})^{N}}$$
11.2

Component cost of preferred stock =
$$r_{ps} = \frac{D_{ps}}{P_0 - \text{Flotation costs}}$$

= $\frac{D_{ps}}{P_0(1 - F)} = \frac{D_{ps}}{NP_0}$ 11.3

Required rate of return = Expected rate of return

$$r_s = \hat{r}_s$$

$$r_{RF} + RP_s = \frac{\hat{D}_1}{P_0} + g$$
 11.4

9.3
$$r_s = r_{RF} + RP_s = r_{RF} + RP_M \beta_s = r_{RF} + (r_M - r_{RF})\beta_s$$
 11.5

$$r_s = \hat{r}_s = \frac{\hat{D}_1}{P_0} + g$$
 11.6

$$r_e = \frac{\hat{D}_1}{NP_0} + g = \frac{\hat{D}_1}{P_0(1-F)} + g$$
 11.7

WACC =
$$W_d(r_{dT}) + W_{ps}(r_{ps}) + W_s(r_s \text{ or } r_s)$$
 11.8